metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yue Zhu,^{a,b} Wei-Min Lu,^a* Meng Ma^a and Fang Chen^a

^aChemistry Department, Zhejiang University (Xixi Campus), Hangzhou, Zhejiang 310028, People's Republic of China, and ^bMedical School, Hangzhou Teachers' College, Hangzhou 310012, People's Republic of China

Correspondence e-mail: weimlu2000@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.035 wR factor = 0.112 Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexa- μ - α -methylacrylato-bis[(1,10-phenanthroline)lanthanum(III)] dihydrate

The title compound, $[La_2(C_4H_5O_2)_6(C_{12}H_8N_2)_2]\cdot 2H_2O$, is a discrete centrosymmetric homodinuclear complex, which is structurally very similar to a previously studied analogue. The La^{III} atoms are bridged by two bidentate and two tridentate carboxylate groups, with an La···La separation of 4.0807 (4) Å. Each La^{III} atom exhibits a distorted tricapped trigonal prismatic coordination formed by seven O atoms of bridging methylacrylate groups and two N atoms of the bidentate chelating 1,10-phenanthroline ligands.

Received 17 August 2005 Accepted 13 September 2005 Online 21 September 2005

Comment

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002; Christou et al., 2000). Efforts to obtain molecular magnets containing rare-earth ions have been less numerous because the interactions between pairs of f electrons are expected to be small, producing measurable effects only at extremely low temperatures, but the number of new reported compounds in which rare-earth ions are magnetically coupled to transition-metal ions and/or organic radicals is rapidly increasing. In recent years, we have pursued a project on the structures and properties of heteronuclear complexes of rare-earth and transition metals bridged by carboxyl groups (Wu et al., 2002, 2003, 2004; Zhu et al., 2005). The title complex, (I), was unexpectedly obtained during the preparation of a lanthanum-iron complex.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Fig. 1 shows the molecular structure of the title complex; selected bond distances are listed in Table 1.

The molecule of the title complex, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted. Unlabelled atoms are related to labelled atoms by the symmetry operator (2 - x, 1 - y, 1 - z).

Compound (I) is structurally very similar to another La analogue, (II), in which the water molecule is replaced by an α -methylacrylic acid molecule (Lu, *et al.*, 1996). As one would expect, the surroundings of the central atoms in the two complexes are the same. This means that the La^{III} atoms, with the coordination geometry of a distorted tricapped trigonal prism, are linked to each other by bidentate and tridentate carboxylate groups to form a centrosymmetric dimeric unit. Each La^{III} atom is nine-coordinated by two N atoms of the phenanthroline ligand and seven O atoms from three different coordination modes of six carboxylate groups. The detailed coordination modes of α -methylacrylate groups in (II) are also fully applicable to the title complex. The $La \cdot \cdot La^{i}$ separation [4.0807 (4) Å; symmetry code as in Table 1] in the dimer just exceeds the sum of two atomic radii and is slightly longer than that [4.0456 (4) Å] in (II).

The structure of the title complex has two distinct La–O distances; the average La–O_{bridging} bond length is 2.498 Å and La–O_{chelating} is 2.606 Å, which are similar to those (2.494 and 2.612 Å) of (II). The La–O_{chelating} distance is significantly larger than the sum of the covalent radii of the two atoms, as is to be expected because the $(O-La-O)_{chelating}$ angles of about 50° indicate ring strain. The phenanthroline ligands possess local $C_{2\nu}$ symmetry. The average La–N bond distance is 2.708 Å and is nearly the same as the corresponding La–N distance (2.709 Å) in (II). A water molecule is connected to atom O1 by a hydrogen bond.

Comparison of structures (I) and (II) shows that it is uncertain whether water or a free α -methylacrylic acid molecule will be included in the complex during the growth of the crystal.

Experimental

 $LaL_3 \cdot 2H_2O$ [430 mg, 1.0 mmol; $HL = CH_2C(CH_3)COOH$] was dissolved in water (5 ml). A 1 *M* solution of Fe(NO₃)₃ (1.0 ml) was

added and the pH was adjusted to 4.1 with 0.1 *M* HL. An ethanol solution (5 ml) of 1,10-phenanthroline (200 mg, 1.0 mmol) was added to the mixture with stirring. The filtrate was allowed to stand at room temperature, and colourless single crystals suitable for X-ray diffraction precipitated after a few days. Analysis calculated for $C_{48}H_{50}La_2N_4O_{14}$: C 49.41, H 4.15, N 4.80, La 23.81%; found: C 49.56, H 4.18, N 4.76, La 23.63%.

Z = 1

 $D_r = 1.619 \text{ Mg m}^{-3}$

Cell parameters from 6732

Mo $K\alpha$ radiation

reflections $\theta = 2.5 - 27.5^{\circ}$

 $\mu = 1.80~\mathrm{mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.045$

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -13 \rightarrow 14$

 $k = -13 \rightarrow 14$

 $l = -15 \rightarrow 15$

Chunk, colourless

 $0.21 \times 0.18 \times 0.14 \text{ mm}$

5471 independent reflections

5112 reflections with $I > 2\sigma(I)$

Crystal data

$$\begin{split} & [\text{La}_2(\text{C}_4\text{H}_5\text{O}_2)_6(\text{C}_{12}\text{H}_8\text{N}_2)_2]\cdot 2\text{H}_2\text{O} \\ & M_r = 1184.74 \\ & \text{Triclinic, } P\overline{1} \\ & a = 10.8815 \text{ (4) } \text{\AA} \\ & b = 11.0081 \text{ (5) } \text{\AA} \\ & c = 11.7412 \text{ (7) } \text{\AA} \\ & \alpha = 69.229 \text{ (2)}^{\circ} \\ & \beta = 77.892 \text{ (4)}^{\circ} \\ & \gamma = 68.091 \text{ (2)}^{\circ} \\ & V = 1215.16 \text{ (10) } \text{\AA}^3 \end{split}$$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.703, T_{\max} = 0.786$

 $1_{\text{min}} = 0.703$, $1_{\text{max}} = 0.700$ 11677 measured reflections

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.035 & + 0.7074P] \\ wR(F^2) = 0.112 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.24 & (\Delta/\sigma)_{max} = 0.001 \\ 5471 \ reflections & \Delta\rho_{max} = 0.81 \ e \ {\rm \AA}^{-3} \\ 307 \ parameters & \Delta\rho_{min} = -1.21 \ e \ {\rm \AA}^{-3} \end{array}$

Table 1 Selected bond lengths (Å).

La1-O1	2.584 (3)	La1-O6	2.457 (3)
La1-O2	2.532 (3)	La1-O6 ⁱ	2.718 (3)
La1-O3	2.592 (3)	La1-N1	2.699 (4)
La1-O4	2.493 (3)	La1-N2	2.719 (3)
La1-O5	2.495 (3)		

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Table 2

Hy	/drog	gen-b	ond geo	ometry	/ (Å, °	°).	
-							

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-HW1\cdots O1$	0.99	1.88	2.863 (5)	174

All H atoms were placed in calculated positions (C-H = 0.93-0.96 Å and O-H = 0.94-0.99 Å) and included in the final cycles of refinement in a riding model, with $U_{iso}(H) = 1.2U_{eq}(C) [U_{iso}(H) = 1.5U_{eq}(C,O)]$ in the case of the methyl and water H atoms]. The deepest hole is located 1.0 Å from atom La1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *CrystalStructure* (Rigaku/MSC, 2002); data reduction: *Crystal-Structure*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. (2000). MRS Bull. 25, 66–71.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Lu, W. M, Sao, Z. P. & Dong, N. (1996). J. Coord. Chem. 40, 145-155.

- Miller, J. S. & Drillon, M. (2001a). Magnetism: Molecules to Materials I. Weinheim: Wiley-VCH.
- Miller, J. S. & Drillon, M. (2001b). *Magnetism: Molecules to Materials II*. Weinheim: Wiley-VCH.
- Miller, J. S. & Drillon, M. (2002). *Magnetism: Molecules to Materials III*. Weinheim: Wiley-VCH.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Wu, B., Lu, W. M., Wu, F. F. & Zheng, X. M. (2003). Transition Met. Chem. 28, 694–697.
- Wu, B., Lu, W. M. & Zheng, X. M. (2002). Chin. J. Chem. 20, 846-850.
- Wu, B., Lu, W. M. & Zheng, X. M. (2004). J. Coord. Chem. 57, 805-812.
- Zhu, Y., Lu, W. M. & Chen, F. (2005). Acta Cryst. E61, m1610-1612.